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Abstract

The objective of this paper is to present an alternative closure for turbulent heat transport, that has been established

on the ground of v2–f model with so-called elliptic relaxation equation and the two-equation model for turbulent ther-

mal field. New formulae on the eddy heat diffusivity is proposed. Additionally the production term of destruction rate

of temperature variance transport equation is reformulated. No damping functions are involved in this model. Results

of numerical computation have been compared with the experimental data for fully developed thermal field in the pipe

and DNS heat transfer prediction for two-dimensional channel flow. The model predicts reasonably well the near-wall

distribution of basic turbulence statistics.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The modelling of the turbulent flows with heat trans-

fer focuses mainly on solving properly velocity field

rather than temperature field. It is generally accepted

that the influence of turbulence models for momentum

on the solution is much greater than the influence of tur-

bulence closures for energy equation which are usually

simplified to an algebraic expressions. The simplest

way of turbulent heat flux modelling by means of

employing a constant or varying turbulent Prandtl num-

ber Prt seems to be sufficient and economical but only

for prediction of smooth pipe and simple channel flows

without separation. Such a way of turbulent heat flux

modelling is a direct succession of the so-called Rey-

nolds analogy between turbulent heat and momentum
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transfer. Some authors argue that more sophisticated

models are needed especially that it should be no more

difficult and time consuming [1,2].

In view of present research experience one of the

most important problems is connected with proper mod-

elling of the near-wall effects. These effects, which are

dominant in the case of flows in channels, pipes and

other domains closely constrained by walls, are rather

simplified by employing so-called wall or damping func-

tions that are based on the geometry and some flow

parameters. Non-local effect of near-wall turbulence as

the kinematic blocking (y+ < 200) and the dynamic vis-

cous damping (y+ < 20) could be both alternatively

modelled by introducing an elliptic relaxation equation

for the redistribution term in the transport equations

for turbulent stresses, that was done by Durbin [3]. Eddy

diffusivity version of such a model uses as a turbulent

velocity scale in the turbulent viscosity formulation

some scalar representation of wall-normal stresses v02,
instead of standard turbulent kinetic energy k [4–7].
ed.
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Nomenclature

vj mean velocity components

Cl, Cg, C�, Ck, Cp, Cd model constants

f variable related to the turbulent energy

redistribution in the v02 transport equation
fl, fk damping functions of models

k turbulent kinetic energy

kh temperature variance

p mean pressure

Pr, Prt molecular and turbulent Prandtl number

q heat flux

Re Reynolds number

Sij strain rate tensor

T mean temperature

y wall-normal distance

v 0 wall-normal velocity fluctuations

a, at molecular and turbulent heat diffusivity

dij Kronecker delta

� dissipation rate of k

�h destruction rate of kh

m, mt molecular and turbulent viscosity

q fluid density

rh coefficient for turbulent diffusion of kh and

�h
sm, sh turbulent velocity and temperature field

timescales

h 0 temperature fluctuations
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Modelling of the turbulent heat flux evolution equa-

tions is still problematic and the reported results are

only slightly better than obtained with lower order clo-

sures which based on the eddy diffusivity formulation

[2,8,9]. Thus two-equation kh–�h approach to the model-

ling of the turbulent heat flux is considered in the present

study. Some attention is paid to the destruction rate of

temperature variance transport equation. Different ap-

proaches are generally employed to predict the genera-

tion of �h [7–12].
Standing on the ground of Durbin�s v2–f model [3,4]

and an additional two-equation kh–�h turbulent heat

transfer closure of Deng et al. [11] a new proposition

for turbulent heat flux closure is presented here. It as-

sumes that v02 should be also employed in turbulent heat
diffusivity formulation. As a result a damping functions

are no longer needed. Constants of model have been cal-

ibrated and validated on the base of the experiment by

Hishida and Nagano of thermal boundary layer devel-

opment in the pipe [14,15] and DNS heat transfer data

by Kasagi et al. for two-dimensional channel flow [16].

The details of the presented line of reasoning can be

found in dissertation [17] and the preliminary results in

[18]. Possibilities of extension of presented class of mod-

els to multiphase flows are discussed in the paper by

Bilicki and Badur [19].
2. Coupled v2–f–h02–�h model for turbulent thermal field

Two-equation or second-order Reynolds-stress clo-

sures are usually employed in the CFD codes. In these

codes, the most popular way of computing turbulent

heat flux is the well known simplification by introducing

the turbulent Prandtl number Prt

Prt ¼
mt
; ð1Þ
at
which directly links turbulent diffusivity of heat at with
turbulent viscosity mt. It is known however, that at
should be at least represented as a function of turbulent

time scales for velocity and thermal fields, which is the

main assumption of the two-equation kh–�h type of

closures [2,7–12].

The main concept of a coupled v2–f–kh–�h model has
been established on the assumption that both turbulent

momentum and heat transfer are governed mainly by

the turbulent velocity component normal to the wall

v02 [3,4]. The normal Reynolds stress component repre-
sented here by scalar v02 is naturally damped in the wall

vicinity. It could be used as a turbulent velocity scale in-

stead of turbulent kinetic energy k in the eddy diffusivity

of heat formulation (3) in an analogy to the eddy viscos-

ity formula that was given by Durbin (2)

mt ¼ Clflksm ! Clv02sm; ð2Þ

at ¼ Ckfkksh ! Ckv02sh: ð3Þ

In addition the damping function fk could be simply

omitted in this case. Turbulent time scale of velocity field

sm is usually defined as a relation of turbulent kinetic en-

ergy k and its dissipation rate �. However, it is not clear
what time scale sh should be employed in the formula-

tion (3) for turbulent heat diffusivity [2,9]. Most papers

report that the turbulent eddy diffusivity of heat at
should at least involve dynamic time scale k/�, and ther-

mal field time scale kh/�h [2,8–12], where temperature

variance kh is defined as

kh ¼
h02

2
: ð4Þ

As a result at may be written in the form

at ¼ Ckv02
k
�

� �l kh

�h

� �m

; lþ m ¼ 1: ð5Þ



Fig. 1. The wall-normal profiles of Ckfkk, of the Deng et al.�s
model and a new proposition Ckv02, of model v

2–f–h02–�h.
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The near-wall profiles of the expression Ckfkk from ori-

ginal two-equation Deng et al.�s model and proposed

Ckv02 from coupled v2–f–kh–�h model (Eq. (5)) are pre-

sented in Fig. 1.

Employing of new formula Ckv02 instead of Ckfkk re-

quires only a constant Ck to be adjusted.

2.1. Model for velocity field

One can find many examples of original and modified

v2–f models [4–7] and also some implementations of an

elliptic relaxation method for modelling near-wall effects

[20,21]. A full set of governing equations for the v2–f

model is as follows [5,6]:

Dk
Dt

¼ o

oxj
m þ mt

rk

� �
ok
oxj

� �
þ Pk � �; ð6Þ

D�

Dt
¼ o

oxj
m þ mt

r�

� �
o�

oxj

� �
þ C�1Pk � C�2�

s
; ð7Þ

Dv02

Dt
¼ o

oxj
m þ mtð Þ ov

02

oxj

" #
þ kf � �

k
v02; ð8Þ

f ¼ L2
o

oxj

of
oxj

� �
þ C1

s
2

3
� v02

k

" #
þ C2

Pk

k
: ð9Þ

Eqs. (6)–(9) are solved together with the mean continuity

and momentum balance equations

oq
ot

þ o

oxi
qvið Þ ¼ 0; ð10Þ

Dvi
Dt

¼ � 1

q
op
oxi

þ o

oxj
m
ovi
oxj

� v0iv
0
j

� �
: ð11Þ

After employing the eddy diffusivity concept the un-

known turbulent stresses are represented by
�v0iv
0
j ¼ 2mtSij �

2

3
kdij: ð12Þ

The turbulent viscosity is defined by formula (2) and Sij

is a strain-rate tensor defined as

Sij ¼
1

2

ovi
oxj

þ ovj
oxi

� �
; ð13Þ

which is also employed to model a production of turbu-

lent kinetic energy Pk

Pk ¼ 2mtSijSij: ð14Þ

The time and length scales which appear in Eqs. (7) and

(9) are as follows:

s ¼ max
k
�
; 6

ffiffiffi
m
�

r� �
; ð15Þ

L ¼ CL max
k3=2

�
;Cg

m3

�

� �1
4

" #
: ð16Þ

The model constants for v2–f model employed in the

present analysis are the same as in [5]

Cl ¼ 0:22; C1 ¼ 0:4; C2 ¼ 0:3; CL ¼ 0:25;

Cg ¼ 85; C�2 ¼ 1:9; r� ¼ 1:3:
ð17Þ

An additional coefficient C�1 which controls the shear

layer spreading rate [3] needs to be computed from:

C�1 ¼ 1:4 1þ 0:045

ffiffiffiffiffi
k

v02

r� �
: ð18Þ

The boundary conditions for solid walls (y ! 0) are:

k ¼ 0; � ! 2mk
y2

; v02 ¼ 0; f ! � 20m2v02

�y4
: ð19Þ
2.2. Model for thermal field

The Fourier–Kirchhoff energy balance equation has

the standard form

T hð Þ ¼ Dh
Dt

þ o

oxj
a
oh
oxj

� �
¼ 0: ð20Þ

A so-called Reynolds averaging procedure of Eq. (20) al-

lows to obtain the mean energy equation

DT
Dt

¼ o

oxj
a
oT
oxj

� v0jh
0

� �
; ð21Þ

where h and h 0 are instantaneous temperature and fluc-

tuations of temperature respectively (h = T + h 0). Eq.

(21) includes term �v0jh
0 that needs closing.

Extensive research in the area of turbulent heat flux

modelling has been conducted from algebraic to sec-

ond-order level. Comprehensive reviews can be found

in [7,8]. Successful implementation of two-equation heat

flux kh–�h model was presented firstly in 1988 by Nagano
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and Kim [2]. A number of modified versions of model

kh–�h have been published afterwards [9–11]. Such mod-

elling requires that two additional transport equations

are employed, i.e. the temperature variance kh and its

destruction (dissipation) rate �h. Exact transport equa-
tions of the temperature variance and its dissipation rate

are derived from particular expressions [7]

h0TðhÞ þTðhÞh0 ¼ 0; ð22Þ

2a
oh0

oxj

o

oxj
Tðh0Þ ¼ 0: ð23Þ

The resulting transport equations have the form

[7,11,12,17]

Dh02

Dt
¼ o

oxj
a
oh02

oxj

 !
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}Dh

� o

oxj
v0jh

02
� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Dt
h

� 2v0jh
0 oT
oxj|fflfflffl{zfflfflffl}Ph

� 2a
oh0

oxj

oh0

oxj|fflfflfflffl{zfflfflfflffl}�h
; ð24Þ

for temperature variance kh and

D�h
Dt

¼ o

oxk
a
o�h

oxk

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}D�h

� a
o

oxk
v0k
oh0

oxj

oh0

oxj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Dt

�h

� 2a
oh0

oxj

oh0

oxk

ovk
oxj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}PM�h

� 2a
ov0k
oxj

oh0

oxj

oT
oxk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}PT�h

� 2a
ov0k
oxj

oh0

oxj

oh0

oxk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}P t
�h

� 2av0k
oh0

oxj

o2T
oxkoxj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}PG�h

� 2a
o
2h0

oxkoxj

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}��h
; ð25Þ

for destruction rate of temperature variance, �h.
The modelling of temperature variance equation kh

usually bases on the ground of gradient hypothesis for

the turbulent diffusion Dt
h and also for the production

terms Ph

Dt
h ¼ � o

oxj

at

rh

okh

oxj

� �
; ð26Þ

P h ¼ at
oT
oxj

oT
oxj

: ð27Þ

Transport equation of temperature variance takes thus a

final form

Dkh

Dt
¼ o

oxj
a þ at

rh

� �
okh

oxj

� �
þ P h � �h: ð28Þ

More attention is needed when the destruction rate of

temperature variance transport equation is to be consid-
ered. The source terms in evolution equation of �h (25)
include several time and generation-rate scales [7,

11,12]. Therefore, it is difficult to find a simple physical

interpretation for all of correlations between velocity

and temperature fluctuations. The turbulent diffusion

term is approximated similarly to Eq. (29) by

Dt
�h
¼ � o

oxj

at

rh

o�h
oxj

� �
: ð29Þ

Total production rate of �h consists of mean gradient

production terms PM
�h

and PT
�h
, gradient production PG

�h

and turbulent production P t
�h
[8]. The turbulent produc-

tion term P t
�h
is often omitted or added to mean-field gen-

eration processes although it could be important in

high-Re-number flows [12]. Only a number of closures

involve gradient production term PG
�h
, among them the

model of Nagano and Kim [2], and also that of Shikaz-

ono and Kasagi [9]. The latter involves normal velocity

fluctuations v02 and thermal time scale kh/�h in the expres-
sion which approximates gradient production term

PG
�h
¼ 2aCw2v02

kh

�h

o2T
oy2

� �2

; ð30Þ

where coordinate y is taken as a normal to the wall.

Mean gradient mechanical PM
�h
and thermal PT

�h
pro-

duction terms are usually approximated separately

[2,9,10,12]. Deng et al.�s model employs one term only,

which blends mechanical and thermal contribution by

means of mixing time scale and thermal production rate

Ph [11]

PMþT
�h

¼ Cp1fp1

ffiffiffiffiffiffiffi
��h
kkh

r
P h: ð31Þ

Following Deng et al.�s proposition, in the present

model one term is assumed that approximates all gener-

ation sources of �h. Let us consider situation when coef-

ficients l = m = 0.5 in new eddy diffusivity expression (5)

as in standard models [2,10,11]. Then introducing for-

mula (5) together with production term (27) to Eq.

(31) one can obtain a simplified approximation of mean

gradient terms PM
�h
and PT

�h

PMþT
�h

¼ Cp1v02
oT
oxj

� �2

; ð32Þ

that is close in its form to PG
�h
gradient production term

of Shikazono and Kasagi (Eq. (30)).

Dissipation of �h is modelled as in many two-equa-

tion turbulent heat flux closures [2,9–12] but without

using any damping functions. Finally, transport equa-

tion of �h takes the following form:

D�h

Dt
¼ o

oxj
a þ at

r�h

� �
o�h

oxj

� �
þ Cp1v02

oT
oxj

� �2

� Cd1�h
�h

kh
� Cd2�h

�

k
: ð33Þ
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The model constants are determined on the base of exist-

ing two-equation closures [2,8–11]. Constant Ck which

appears in the eddy diffusivity relation is estimated by

comparison of new expression Ckv02 and Ckfkk from pre-

vious model by Deng et al [11]. Similar procedure is to

be employed (together with some calibration) for the

production term in �h equation. The destruction terms

constants are assumed identical to [8,10,11] as their im-

pact on the solution is rather weak [7]. It should be

remembered that the transport equations in the present

study are constructed on the base of kh rather than h02.

As a consequence some attention is needed when differ-

ent closures constants are compared. In summary, the

constants of a implemented two-equation model, are

taken as follows:

Ck ¼ 0:2; Cp1 ¼ 0:63; Cd1 ¼ 1:0; Cd2 ¼ 0:9;

l ¼ 1:5; m ¼ �0:5; rh ¼ 1:0:
ð34Þ

The boundary conditions on the impermeable walls has

been assumed identical to standard two-equation clo-

sures [10,11]

kh ¼ 0; �h ! a
kh

y2
: ð35Þ

Additionally for cases with constant heat flux at the wall

(qw = const.) a new boundary conditions proposed by

Deng et al. could be validated

kh ¼ 0;
o�h
oy

¼ 0: ð36Þ

It is known, that for case of constant heat flux, temper-

ature fluctuations are not zero at the wall, especially

when unsteady heat conduction processes in solid walls

are considered [13]. However in an air flow (molecular

Prandtl number Pr = 0.71) the wall temperature fluctua-

tions are negligibly small [22], so assumption of vanish-

ing kh at the walls could be employed.

The model with boundary conditions represented by

(35) and the model that employs (36) for approximation

of �h at the wall will be called ver. 1 and ver. 2 respectively.
3. Computation results

Validation of combined model could be conducted

with standard references data, i.e. the experiment of

Hishida and Nagano of developed thermal field in the

heated pipe with the uniform temperature at the wall

(Tw = const.) [14,15] and DNS results of Kasagi for a

heated 2D channel with the uniform heat flux imposed

at the wall (qw = const.) [16].

3.1. Numerical procedure

A commercial CFD code FLUENT 6.0.12 [23], based

on the finite volume method, was used to solve the set of
scalar Eqs. (6)–(9) for the velocity field and (28)–(33) for

the thermal field together with mean continuity (10),

momentum (11) and energy (21) equations.

All six equations of combined model were imple-

mented into the solver by an external subroutine [17].

The QUICK spatial scheme was employed to discretize

convection terms of the mean momentum and energy

balance equations. The second-order discretization

scheme was applied for the convection terms of scalars

evolution equations. The diffusion terms for all equa-

tions were central-differenced. The SIMPLEC method

was used for pressure–velocity coupling. For both pipe

and 2D channel cases a structured grids were built with

proper exponential near-wall refinement.

At the beginning, the standard value Prt = 0.85 was

employed to solve the energy balance equation. When

solution of four equations describing turbulent velocity

field became converged, the next two equations, i.e. for

temperature variance and its destruction rate, were

implemented and involved in turbulent eddy diffusivity

formulation (5), instead of using the turbulent Prandtl

number concept (1).

In addition a low-Reynolds-number k–� model for

turbulent velocity field of Abe et al. [10], that is available

in FLUENT 6.0.12 [23], has been employed together

with implemented by the external subroutine closure of

Deng et al.�s for comparison.

3.2. Heated pipe flow (Tw = const.)

Numerical solution has been compared with experi-

mental data given in [14,15]. The experiment of heated

pipe, by means of uniform temperature at the wall,

was performed in air flow (Pr = 0.71) for a Reynolds

number Re = 40,000 based on the pipe diameter and

bulk velocity. The results of calculations have been pre-

sented for cross section where flow was fully developed.

The profiles of mean velocity v+ are presented in Fig.

2. Model v02–f predicts the velocity profile reasonably

well when compared to experimental data and Abe

et zal. low-Re-number model. Slight overprediction of

velocity is noticed in the region of y+ J 100. The same

problem is reported in [4] for similar set of constants of

v2–f model.

The predicted mean temperature T+ normalized by

friction temperature is plotted in Fig. 3. Again the re-

sults computed by means of coupled model described

here as ver. 1 correlate well with the experimental and

modelled data by Deng et al.�s closure.
The profiles of normalized temperature variance kþh

are presented in Fig. 4. The shape of the modelled curves

is similar to experimental data but some overprediction

of kþh value is observed. Differences between coupled and

Deng et al.�s closures are however small.
The changes of the production of temperature vari-

ance Pþ
h are depicted in Fig. 5.



Fig. 3. Profile of mean temperature T+ (Tw = const.).

Fig. 4. Changes of temperature variance kþh (Tw = const.).

Fig. 5. Production of the normalized temperature variance Pþ
h

(Tw = const.).

Fig. 6. Turbulent heat flux ð�v0h0Þþ (Tw = const.).

Fig. 2. Mean velocity v+ profile (Tw = const.).
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The predicted non-dimensional turbulent heat flux

ð�v0h0Þþ is illustrated in Fig. 6. As in the case of temper-
ature variance (Fig. 4) and its production rate (Fig. 5)

results are in good agreement with measurements. Both

models employed in the analysis give almost the same

results.

Changes of the measured and computed turbulent

Prandtl number are presented in Fig. 7. Additionally,

the Kays and Crawford [1] correlation for Prt is plotted

for comparison. The results obtained with the combined

v2–f–h02–�h model correlate quite successfully with the

experimental data and Kays formulae.

3.3. Heated channel flow (qw = const.)

Following Deng et al.�s suggestion on using different

expression to approximate �h value at the wall for the

case of uniform heat flux imposed at the wall, two kinds

of boundary condition were investigated. First of them

(described as ver. 1) employs, for evaluation of �h at

the wall, formula (35)—the same as in the analysis with



Fig. 7. Profile of the turbulent Prandtl number Prt for the case

of (Tw = const.).

Fig. 9. Profile of mean temperature T+ for channel flow

(qw = const.).

Fig. 10. Near-wall changes of temperature variance kþh
(qw = const.).
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constant temperature at the wall of heated pipe pre-

sented in Section 3.2. Second (described below as ver.

2) uses new formula (36) that was derived for constant

heat flux at the wall.

The reference data base on DNS results of Kasagi

et al. [16] for two-dimensional heated channel flow

Re = 4560 (based on channel half width) of air

(Pr = 0.71) as the working medium. Durbin�s v2–f model
was validated by the comparison of velocity profiles in

boundary layer which is presented in Fig. 8. A good

agreement is observed between DNS and computed data

both for Abe et al. and v2–f models.

Temperature profile for 2D channel flow is shown in

Fig. 9. Here some underprediction of temperature is ob-

served for both versions of coupled closure. On the other

hand, the model of Deng et al. exactly predicts temper-

ature profile from DNS data.

The corresponding comparison of temperature vari-

ance and its dissipation rate are presented in Figs. 10

and 11, respectively. The maximum level of temperature
Fig. 8. Profile of mean velocity v+ in 2D channel flow.

Fig. 11. Destruction rate of temperature variance �þh
(qw = const.).



Fig. 12. Profile of turbulent Prandtl number Prt in thermal

boundary layer (qw = const.).
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fluctuation intensity is predicted correctly by coupled

models but the slope of the computed curves is too

low when compared to DNS data. However predicted

values seem to be slightly better than those obtained

with Deng et al. model.

The predictions of �þh obtained with coupled closures

are as accurate as those from the Deng et al.�s model for
y+>5. The best results are obtained with ver. 1 of cou-

pled model where computed destruction rate at the wall

is equal �h from DNS. However, when condition

o�h/oy = 0 is employed with the coupled model (ver. 2)

then �h attains too low value at the wall.

The turbulent Prandtl number Prt profiles in the wall

vicinity are shown in Fig. 12. The computed results of

Prt are in some opposition to data of Kasagi where tur-

bulent Prandtl number approaches an asymptotic value

�1 at the wall. The results by means of Deng et al.�s
model are below DNS data and coupled models gener-

ally overpredict DNS data in the near-wall region

y+ < 10. When condition o�h/oy = 0 is employed with

coupled model (ver. 2) then Prt reaches extremely high
Fig. 13. Budget of the temperature variance kh: (a) DNS results by [1
value at the wall. Similar results were reported in [22]

for higher molecular Prandtl number Pr 	 1.
6], (b) Deng et al.�s model, (c) ver. 1 closure, (d) ver. 2 closure.



Fig. 14. Budget of the destruction rate of temperature variance �h: (a) DNS results by [16], (b) Deng et al.�s model, (c) ver. 1 closure, (d)
ver. 2 closure.
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The budgets of temperature variance kh and the rele-

vant destruction rate �h are presented in Figs. 13 and 14,
respectively. Results for all investigated models are close

to the DNS predictions in the case of kh budgets. The

only differences in Fig. 13 are observed in the near-wall

dissipation of kh. They are connected mainly with type

of employed boundary condition at the wall.

More discrepancies are revealed in Fig. 14. The pro-

duction of �h from DNS prediction is much greater than

computed with all models despite the fact that the max-

imum value is predicted rather correctly. The computed

changes of dissipation of �h are lower than DNS results

and no one model is better. These discrepancies reveal

that a more carefully modelling of production and dissi-

pation source terms of �h should be considered.
4. Concluding remarks

The two-equation eddy diffusivity concept for both

velocity and thermal fields is a simple and reliable way

to obtain fast and correct solutions for engineering

applications. As it was reported earlier, v2–f model han-
dles fairly well the separation flows [4–6], where dissim-

ilarity exists between velocity and temperature fields

[10]. Two-equation turbulent heat flux modelling avoids

the turbulent Prandtl concept that is in such situations

deficient [1].

Presented v2–f–kh–�h model seems to be comparable

with the standard low-Re-number models coupled with

the known two-equation turbulent heat flux closures. The

advantage of presented closure results mainly from the

proper non-local near-wall modelling as in original mod-

el implemented by Durbin [4], where no geometrical

damping functions have to be employed. Employing

thermal time scale sh and normal velocity fluctuations

v02 for turbulent diffusivity of heat evaluation (5) makes

the coupled model more consistent. The changes of mean

flow and turbulent heat flux quantities in the wall prox-

imity are predicted successfully for analysed cases.

It should be pointed, however, that more attention is

needed when the source terms of �h are investigated. In
view of predicted results, especially for near-wall profile

and the budget of �h, all the processes which are respon-

sible for generation and dissipation should be properly

accounted for.
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